DOI: 10.1002/ejic.201000801

Coordination of Coenzyme M and Its Derivatives on Ni^{II}(tetraazacycle) Complexes: A Model for the Active Site of Methyl Coenzyme M Reductase

Jun-ichi Nishigaki, [a] Tsuyoshi Matsumoto, [a] and Kazuyuki Tatsumi*[a]

Keywords: Enzyme models / Nickel / Tetraazamacrocycle / Methanogenesis / Methane

A series of tetraazamacrocyclic nickel(II) complexes coordinated by methyl coenzyme M (MeSCoM), coenzyme M (HSCoM), and 3-methylthiopropionate (Metp) have been synthesized as structural models of the active site of methyl coenzyme M reductase in the oxidized MCR_{silent} state. They include RSRS-[Ni(tmc)(L)](OTf) {L = MeSCoM (2), HSCoM (4), and Metp (5)} (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and [Ni(pyc)(L)](OTf) {L = MeSCoM (6), HSCoM (7), Metp (8), pyc = 5-oxo-7-(2-pyridyl)-1,4,8,11-

tetraazacyclotetradecane}. The X-ray crystal analysis revealed that MeSCoM, HSCoM, and Metp are bound to Ni in an η^{1} manner through interactions with one O atom of each ligand. The tmc complexes assume a pentacoordinate geometry, which is in between a square pyramid and a trigonal bipyramid, while the pyc complexes are octahedral with coordination of the pendant pyridine at the site trans to the sulfonate or carboxylate ligand.

Introduction

Methyl-coenzyme M reductase (MCR) in methanogenic Archaea is the nickel enzyme, which plays an important role in biological methane formation. The enzyme catalyzes the reaction between methyl-CoM (MeSCoM) and N-7-mercaptoheptanovl threonine phosphate (HSCoB), generating methane and a disulfide species (CoBS-SCoM) in the final step of methanogenesis [Equation (1)].^[1]

$$CH_3SCoM + HSCoB \longrightarrow CH_4 + CoBS - SCoM$$
 (1)

$$\Delta G^{0'} = -30 \text{ k I mol}^{-1}$$

Recently, the structures of inactive states of MCR have been determined by crystallographic analysis, and those of MCR_{silent} and $MCR_{ox1-silent}$ from Methanobacterium thermoautrophicum are shown in Figure 1 (a and b).[2] The active site contains a nickel tetrahydrocorphinoid cofactor F_{430} as a prosthetic group (Figure 2),^[2-4] and the nickel is additionally coordinated at an axial position by a sulfonate oxygen of the heterodisulfide CoBS-SCoM for the MCR_{silent} or a thiolato (or thiol) sulfur of the coenzyme M for the MCR_{ox1-silent}. At the other axial position, Gln147 is weakly interacting with the nickel atom, while the coordination mode of the glutamine residue has not been established. The electron density map derived from X-ray analysis suggests the coordination of an oxygen atom, [2,3] while both nitrogen and oxygen atoms appear to be bound to nickel according to the EXAFS data.^[5]

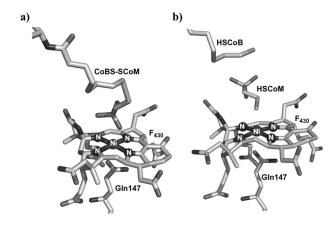


Figure 1. The active site structures of methyl coenzyme M reductase; a: MCR_{silent}, b: MCR_{ox1-silent}.

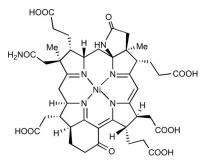


Figure 2. Schematic view of cofactor F_{430} in MCR.

E-mail: i45100a@nucc.cc.nagoya-u.ac.jp Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201000801.

5011

[[]a] Research Center for Materials Science and Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan Fax: +81-52-789-2943

Although nickel complexes of N₄ macrocycles have been reported as models of the MCR active site, [6,7] attempts to synthesize those containing methyl coenzyme M (MeS-CoM) and coenzyme M (HSCoM) remain very limited. [6,8] For instance, Riordan and co-workers have demonstrated the formation of $[Ni^{II}(tmc)(MeSCoM)]^+$ (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)[9] in situ, and they proposed that MeSCoM is bound at a sulfonate oxygen atom on the basis of the IR and ¹H NMR data. ^[6] However, the MeSCoM complex has not been isolated, and the X-ray structure analysis is as vet unavailable. We herein report the isolation and structures of nickel(II) tetraazamacrocycles, $[Ni(tmc)]^{2+}$ and $[Ni(pyc)]^{2+}$ {pyc = 5-oxo-7-(2-pyridyl)-1,4,8,11-tetraazacyclotetradecane},[10] which carry methyl coenzyme M (MeSCoM), coenzyme M (HSCoM), and 3-(methylthio)propionate (Metp) at an axial position.

Results and Discussion

Synthesis of RSRS-[Ni(tmc)(L)](OTf) {L = MeSCoM (2), HSCoM (4), $MeS(CH_2)_2CO_2$ (5)}

The tetramethyltetraazacyclotetradecane ligand in $[Ni(tmc)]^{2+}$ may have two major conformations, *RSRS*- and *RRSS*- $[Ni(tmc)]^{2+}$, as shown in Scheme 1.^[11]

Scheme 1. Two major stereoisomers of Ni(tmc)²⁺.

The RSRS-conformer is more appropriate for modeling the active site of methyl coenzyme M reductase, because it can take an axial ligand to assume a square-pyramidal structure.[12,13] Thus, RSRS-[Ni(tmc)(Cl)](Cl) was prepared by the reaction of NiCl₂·6H₂O with tmc, and the chloride complex was treated with an excess amount of Na[MeS-CoM] in water.^[14] However, the chloride ligand coordinated at Ni remained intact and the counter-anion was replaced by the MeSCoM sulfonate, resulting in the formation of RSRS-[Ni(tmc)(Cl)](MeSCoM) (1) in 55% yield as a brownish-green crystalline powder. The structure was determined by X-ray crystallography. As shown in Figure 3, the complex assumes a square-pyramidal geometry at Ni, which is similar to the structure of RSRS-[Ni(tmc)(OAc)].[13a]

In an attempt to remove the chloride ligand on Ni, complex 1 was treated with silver triflate in acetonitrile. After removing AgCl, RSRS-[Ni(tmc)(MeSCoM)](OTf) (2) was isolated in 76% yield as green crystals. The X-ray analysis confirmed that MeSCoM coordinates at Ni through an interaction with an oxygen atom of sulfonate. The UV/Vis spectra of 2 in THF exhibits two d-d* bands at 403 and 680 nm, which are consistent with the UV data reported for square-pyramidal Ni^{II} complexes with a tmc ligand, in which two d-d* bands appear at 380–430 and 600–

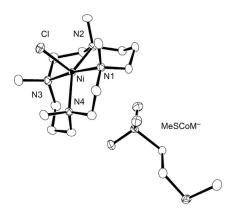


Figure 3. Structure of 1 with 50% probability ellipsoids.

720 nm.^[12,15] In contrast, the square planar Ni^{II} complexes of tmc show one d-d* band at 490–560 nm.^[12,15] Thus, the pentacoordinate structure of **2** is likely to be retained in solution (Scheme 2).

Scheme 2. Synthesis of complex 2.

Next we attempted to synthesize the HSCoM analogue of the MeSCoM complex 2, RSRS-[Ni(tmc)(HSCoM)]-(OTf) (4), by a procedure similar to the synthesis of 2. Thus, RSRS-[Ni(tmc)(Cl)](HSCoM) (3) was prepared from the reaction of sodium sulfonate salt of HSCoM and RSRS-[Ni(tmc)(Cl)](Cl) in water, which was then allowed to react with silver triflate. Although the desired complex 4 was obtained, the yield was as low as ca. 10%, and a considerable amount of RSRS-[Ni(tmc)(Cl)](OTf) was generated. Therefore, RSRS-[Ni(tmc)](OTf)2 was prepared as an alternative precursor, and it was treated with 1 equiv. of (nBu₄N)-[HSCoM] in acetonitrile. From this procedure, 4 was isolated in 48% yield as green crystals, and the pentacoordination structure was determined by X-ray analysis. The UV/ Vis spectrum of 4 in THF shows two d-d* bands at 403 and 677 nm, indicating that the pentacoordination geometry is retained in solution also for the HSCoM complex (Scheme 3).

Scheme 3. Synthesis of complex 4.

The 3-methylthiopropionate (Metp) complex, RSRS-[Ni(tmc)(Metp)](OTf) (5), was also synthesized. In this case, RSRS-[Ni(tmc)(Cl)](Cl) was found to be effective as a precursor, and the treatment of the chloride complex with sodium 3-methylthiopropionate (NaMetp) and sodium triflate in acetonitrile afforded 5 in 83% yield as green powder. Recrystallization from a THF/Et₂O solution provided crystals suitable for X-ray analysis. The UV/Vis spectrum of 5 in THF again indicates a pentacoordinate geometry in solution, exhibiting two d-d* transition bands at 397 and 640 nm as were observed in the spectra of 2 and 4. The IR band at 1599 cm⁻¹, which arises from the carboxylate group in 5, is substantially shifted to a lower frequency compared with that of HMetp (1713 cm⁻¹), conforming to a Mept coordination at the carboxylate site of Metp (Scheme 4).

Scheme 4. Synthesis of complex 5.

Synthesis of $[Ni(pyc)(L)]OTf \{L = MeSCoM (6), HSCoM (7), MeS(CH₂)₂CO₂ (8)\}$

At the MCR active site, a glutamine residue (Gln147) is weakly bound to the Ni atom, as shown in Figure 1. In order to mimic this sixth coordination at the site *trans* to MeSCoM or HSCoM, we prepared MCR model complexes which have the tetraazamacrocyclic ligand with a pyridine pendant, pyc.

The chloride complex [Ni(pyc)(Cl)](Cl) was prepared from pyc and NiCl₂·6H₂O, and it was converted into the triflate complex [Ni(pyc)(NCCH₃)](OTf)₂ by treatment with sodium triflate in methanol followed by extraction with CH₃CN.^[16] The reaction of the triflate complex with 1 equiv. of (nBu₄N)[MeSCoM] in acetonitrile afforded [Ni-(pyc)(MeSCoM)](OTf) (6) as purple crystals in 53% yield. The positive ESI-TOF-MS spectrum of 6 shows the signals attributable to [Ni(pyc)(MeSCoM)]⁺, indicating the coordination of MeSCoM at the nickel center. The UV/Vis spectrum of 6 in acetonitrile exhibits one d-d* band at 528 nm, which is similar to the spectrum of [Ni(L')(OH₂)](ClO₄)₂

{L' = 7-(2-pyridyl)-1,4,8,11-tetraazacyclotetradecane} showing an absorption at 523 nm.^[17] The octahedral coordination structure of **6** was confirmed by X-ray analysis. The HSCoM and Metp complexes, [Ni(pyc)(HSCoM)]-(OTf) (7) and [Ni(pyc)(Metp)](OTf) (8), were also synthesized by similar procedures using (nBu₄N)[HSCoM] and Na(Metp), respectively. Their UV spectra are similar to that of **6**, indicating octahedral coordination at nickel (Scheme 5).

Scheme 5. Synthesis of complexes 6-8.

Molecular Structures of the MCR Model Complexes

The molecular structures of 1–8 have been determined by X-ray analysis. In Figure 4, the ORTEP plots of the complex cations of 2, 4, and 5 are shown, and their metric parameters are listed in Table 1, along with those of 1 for comparison. The sulfonate groups in 2 and 4, and the carboxylate group in 5, are bound to Ni through an interaction with one O atom. In the pentacoordination geometries of these complexes and 1, the N atoms of tmc are not coplanar. The N1–Ni–N3 bonds are substantially bent (145°–152°), while the N2–Ni–N4 bonds are nearly linear (172°–175°). Therefore, the coordination geometry at Ni can be described either as a distorted square pyramid with O or Cl occupying the apical position, or a distorted trigonal bi-

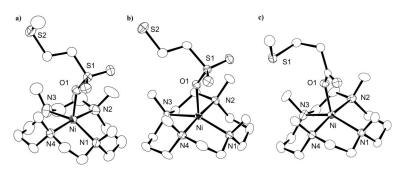


Figure 4. Structures of the complex cations of a) 2, b) 4, and c) 5 with 50% probability ellipsoids. The hydrogen atoms and anions are omitted for clarity.

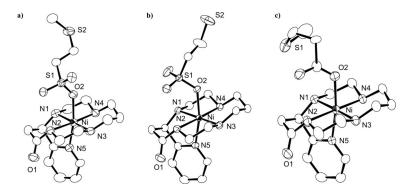


Figure 5. Structures of the pyc complex cations of a) 6, b) 7, and c) 8 with 50% probability ellipsoids. The hydrogen atoms are omitted for clarity. The major components of the disordered positions for 7 and 8 are depicted.

pyramid where N2 and N4 are at the axial positions. The longer Ni–O bond lengths of the sulfonato complexes 2 and 4 relative to that of 5 indicate weaker coordination of the sulfonate group than the carboxylate group.

Table 1. Selected bond lengths [Å] and angles [°] of 1, 2, 4, and 5.

	1		2	4	5
Ni-Cl	2.3074(17)	Ni-O1	2.017(2)	2.0196(19)	1.9710(18)
Ni–N1	2.099(5)	Ni–N1	2.111(2)	2.114(2)	2.142(2)
Ni-N2	2.181(4)	Ni-N2	2.129(2)	2.145(2)	2.1475(18)
Ni-N3	2.132(5)	Ni-N3	2.112(3)	2.117(2)	2.132(2)
Ni-N4	2.133(5)	Ni–N4	2.130(2)	2.135(2)	2.1258(18)
Cl-Ni-N1	108.30(14)	O1-Ni-N1	108.42(8)	110.92(9)	116.26(8)
Cl-Ni-N2	93.05(14)	O1-Ni-N2	93.29(9)	91.39(8)	90.57(7)
Cl-Ni-N3	106.57(14)	O1-Ni-N3	99.76(10)	99.50(9)	97.27(8)
Cl-Ni-N4	95.13(14)	O1-Ni-N4	94.26(9)	93.77(8)	96.91(7)
N1-Ni-N3	145.12(19)	N1-Ni-N3	151.82(11)	149.57(8)	146.39(9)
N2-Ni-N4	171.82(19)	N2-Ni-N4	172.41(10)	174.84(8)	172.49(8)

The ORTEP drawings of the complex cations of 6–8 are shown in Figure 5, and the metric parameters are summarized in Table 2. In these complexes, the pendant pyridine is bound to Ni, and four N atoms of the cyclam ring with an *RSRS* configuration are nearly coplanar. Their coordination geometries are octahedral, where the sulfonate or carboxylate group of 6, 7, and 8 coordinates at Ni in an η^1 manner. The Ni–O2 distances are within a range of Ni–O

Table 2. Selected bond lengths [Å] and angles [°] of 6–8.

	6	7	8
Ni-O2	2.142(2)	2.1330(19)	2.090(2)
Ni-N1	2.054(3)	2.068(2)	2.069(2)
Ni-N2	2.208(3)	2.2408(19)	2.229(2)
Ni-N3	2.072(3)	2.044(2)	2.061(2)
Ni-N4	2.057(3)	2.0590(19)	2.051(2)
Ni-N5	2.118(3)	2.114(2)	2.145(2)
O2-Ni-N1	89.39(13)	91.72(8)	88.81(10)
O2-Ni-N2	89.75(12)	88.20(7)	93.13(10)
O2-Ni-N3	89.43(13)	87.55(8)	91.65(11)
O2-Ni-N4	86.77(12)	89.55(7)	87.18(10)
O2-Ni-N5	167.94(13)	168.72(7)	166.46(10)
N1-Ni-N3	176.96(14)	177.74(7)	177.05(10)
N2-Ni-N4	176.51(14)	177.75(8)	179.27(10)
N1-Ni-N5	78.78(14)	78.71(8)	77.65(10)

lengths of the known octahedral (sulfonato)nickel(II) complexes (2.04 to 2.17 Å),^[18] while they are 0.12–0.13 Å longer than the corresponding pentacoordinate tmc complexes **2**, **4**, and **5** because of the pyridine coordination at the *trans* position. The *O*-coordination of the carboxylato complex **8** is again stronger than those of the sulfonato complexes **6** and **7**.

Structural Comparison of the Model Complexes and the Active Site of MCR_{silent}

We have synthesized a series of penta- and hexa-coordinate tetraazamacrocyclic nickel complexes having methyl coenzyme M, coenzyme M, and 3-methylthiopropionate. Among them, the pyc complexes 6 and 7 resemble the active site of MCR_{silent} most, in that MeSCoM and HSCoM coordinate to Ni at the sulfonate site, and in that the coordination geometry at Ni is octahedral with the pendant pyridine being trans to the sulfonate group. In the MCR_{silent} state, a relatively weak interaction between Ni and Gln147 could tune the strength of the coenzyme coordination. However, this coordination mode differs from that of MCR_{ox1-silent}, in which HSCoM is bound to Ni at the thiol sulfur. The preference of sulfonate coordination over thiol coordination in 7 may imply that the sulfonate group is tightly bound to HSCoB, preventing the sulfonate from coordination at Ni. Or the S-coordination of coenzyme M in MCR_{ox1-silent} could occur as a thiolate anion rather than a form of thiol. With this possibility in mind, we examined deprotonation of the HSCoM ligand in 4 and 7, but the reactions led to precipitation of insoluble brown materials and characterization of the product is not possible. Further investigation is underway.

Experimental Section

General: All reactions and manipulations of air-sensitive compounds were conducted under an inert atmosphere of dry nitrogen by employing standard Schlenk techniques or in a glove box. Ether, THF, and acetonitrile were degassed and purified by the method described by Grubbs, where the solvents were passed over columns of activated alumina and supported copper catalyst supplied by Hansen & Co. Ltd. Methanol and ethanol were distilled from Mg under a nitrogen atmosphere. CH₃NO₂ and water were bubbled

with nitrogen prior to use. IR spectra were recorded with a JASCO FT/IR-410 spectrometer. UV/Vis spectra were recorded in 10-mm quartz glass cells with a JASCO V560 spectrometer. Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) spectra were obtained from a Micromass LCT TOF-MS spectrometer. Elemental analyses for C, H, N, and S were performed on a LECO CHNS-932 elemental analyzer where the samples were sealed in silver capsules. Nickel(II) halides, nickel(II) triflate, and the other reagents were purchased and used without further purification. The following compounds were prepared according to literature procedures: tmc,^[9] pyc,^[10] Na[MeSCoM],^[19] (nBu₄N)[MeSCoM],^[6] and (nBu₄N)[HSCoM].^[20]

Synthesis

RSRS-[Ni(tmc)(Cl)](Cl): To an aqueous solution (20 mL) of NiCl₂·6H₂O (1.19 g, 5.0 mmol) was added an ethanol solution (30 mL) of tmc (1.22 g, 4.8 mmol) and the mixture was then stirred for 3 h. The red solution was evaporated in vacuo and extracted with CHCl₃. The green solution was dried with MgSO₄ and evaporated to give a green powder of [Ni(tmc)(Cl)](Cl). The *RSRS*-isomer was purified by recrystallization from acetone solution in 42% yield. The isomeric structure was confirmed by X-ray structural analysis. ESI-TOF-MS (CH₃CN): mlz (%) = 349.1 (100) [M]⁺. UV/ Vis (CH₂Cl₂, room temp.; λ_{max} , nm) (ε [cm⁻¹] m⁻¹): 423 (105), 707 (55). C₁₄H₃₂Cl₂N₄Ni (386.03): calcd. C 43.56, H 8.36, N 14.51; found C 43.69, H 8.25, N 14.24.

RSRS-[Ni(tmc)(Cl)](MeSCoM) (1): To an aqueous solution (5 mL) of *RSRS*-[Ni(tmc)(Cl)](Cl) (124 mg, 0.32 mmol) was added sodium 2-methylthioethanesulfonate (284 mg, 1.6 mmol) and the mixture was stirred at room temp. for 30 min. The red solution was concentrated and extracted with CH₃NO₂. The solution was dried with MgSO₄ and the solvents evaporated to dryness. The residue was recrystallized from CH₃CN/Et₂O to give 1 as brownish-green crystalline powder in 55% yield. The green crystals suitable for X-ray structural analysis were obtained from acetonitrile solution layered with Et₂O at room temp. ESI-TOF-MS (CH₃CN): m/z (%) = 349.1 (100) [M]⁺. UV/Vis (CH₃CN, room temp.; λ_{max} , nm) (ε [cm⁻¹] m⁻¹): 430 (160), 720 (56). C₁₇H₃₉ClN₄NiO₃S₂ (505.80): calcd. C 40.37, H 7.77, N 11.08, S 12.68; found C 40.52, H 7.33, N 11.13, S 12.52.

RSRS-[Ni(tmc)(MeSCoM)](OTf) (2): To an acetonitrile solution (10 mL) of 1 (202 mg, 0.40 mmol) was slowly added an acetonitrile solution (5 mL) of AgOTf (102 mg, 0.40 mmol). The white precipitate of AgCl was filtered off and the solution was evaporated to dryness. The residue was recrystallized from THF/Et₂O to give green crystals of 2 in 76% yield. ESI-TOF-MS (CH₃CN): m/z (%) = 469.1 (100) [M]⁺, 463.1 (5) [M – (MeSCoM) + OTf]⁺. UV/Vis (THF, room temp.; λ_{max} , nm) (ε [cm⁻¹] m⁻¹): 403 (79), 680 (21). C₁₈H₃₉F₃N₄NiO₆S₃ (619.42): calcd. C 34.90, H 6.35, N 9.05, S 15.53; found C 35.38, H 6.34, N 9.06, S 15.35.

RSRS-[Ni(tmc)(Cl)](HSCoM) (3): The synthesis of 3 was carried out as described for 1, but using *RSRS*-[Ni(tmc)(Cl)](Cl) (154 mg, 0.40 mmol) and sodium 2-mercaptoethanesulfonate (354 mg, 2.2 mmol). Complex 3 was isolated as green crystals in 48 % yield. ESI-TOF-MS (CH₃CN): m/z (%) = 349.2 (100) [M]⁺. UV/Vis (CH₃CN, room temp.; λ_{max} , nm) (ε [cm⁻¹] m⁻¹): 435 (116), 717 (61). C₁₆H₃₇ClN₄NiO₃S₂ (491.77): calcd. C 39.08, H 7.58, N 11.39, S 13.04; found C 39.54, H 7.45, N 11.41, S 12.72.

RSRS-[Ni(tmc)](OTf)₂: RSRS-[Ni(tmc)](OTf)₂ was prepared by the treatment of RSRS-[Ni(tmc)(Cl)](Cl) (385 mg, 1.0 mmol) with Na-OTf (520 mg, 3.0 mmol) in aqueous solution (15 mL). The product was extracted with CH₃NO₂ and dried with MgSO₄. The solution was evaporated and recrystallized from acetone/Et₂O to give red

crystals of RSRS-[Ni(tmc)](OTf)₂ in 75% yield. ESI-TOF-MS (CH₃CN): m/z (%) = 157.1 (10) [M]²⁺, 177.6 (20) [M + CH₃CN]²⁺, 463.1 (100) [M + OTf]⁺. UV/Vis (CH₃CN, room temp.; λ_{max} , nm) (ε [cm⁻¹] M⁻¹): 381 (160), 610 (48). C₁₆H₃₂F₆N₄NiO₆S₂ (613.27): calcd. C 31.34, H 5.26, N 9.14, S 10.46; found C 31.94, H 4.96, N 9.04, S 10.54.

RSRS-[Ni(tmc)(HSCoM)](OTf) (4): To an acetonitrile solution (10 mL) of *RSRS*-[Ni(tmc)](OTf)₂ (122 mg, 0.20 mmol) was added an acetonitrile solution (5 mL) of (nBu₄N)[HSCoM] (80 mg, 0.21 mmol). The solution was stirred at room temp. for 1 h and the solvents evaporated in vacuo. The residue was washed with Et₂O and recrystallized from CH₃CN/Et₂O to give green crystals of 4 in 48% yield. ESI-TOF-MS (CH₃CN): m/z (%) = 455.0 (100) [M]⁺, 463.1 (3) [M – (HSCoM) + OTf]⁺. UV/Vis (THF, room temp.; λ_{max} , nm) (ε [cm⁻¹] m⁻¹): 403 (170), 677 (77). C₁₇H₃₇F₃N₄NiO₆S₃ (605.39): calcd. C 33.73, H 6.16, N 9.25, S 15.89; found C 34.05, H 5.86, N 9.32, S 15.33.

RSRS-[Ni(tmc)(Metp)](OTf) (5): To an acetonitrile solution (10 mL) of *RSRS*-[Ni(tmc)(Cl)](Cl) (116 mg, 0.30 mmol) was added NaOTf (52 mg, 0.30 mmol) and sodium 3-methylthiopropionate (43 mg, 0.30 mmol). The mixture was stirred for 3 h at room temp. and the white precipitate was removed by centrifuging. After the solution was evaporated in vacuo, 5 was obtained as a green powder in 83% yield. Green crystals suitable for X-ray structural analysis were obtained from a THF/Et₂O mixed solution of 5. IR (KBr): $\tilde{v} = 1599 \text{ cm}^{-1}$. ESI-TOF-MS (CH₃CN): m/z (%) = 433.1 (100) [M]⁺. UV/Vis (THF, room temp.; λ_{max} , nm) (ε [cm⁻¹] m⁻¹): 397 (60), 640 (26). C₁₉H₃₉F₃N₄NiO₅S₂ (583.36): calcd. C 39.12, H 6.74, N 9.60, S 10.99; found C 38.77, H 6.66, N 9.72, S 10.53.

[Ni(pyc)(Cl)](Cl): To a methanol solution (10 mL) of NiCl₂·6H₂O (190 mg, 0.80 mmol) was added a methanol solution (5 mL) of pyc (232 mg, 0.80 mmol) and the mixture was stirred at room temp. for 3 h. The solution was evaporated and the residue was recrystallized from MeOH/Et₂O to give purple crystals of [Ni(pyc)(Cl)](Cl) in 82% yield. ESI-TOF-MS (MeOH): m/z (%) = 383.9 (50) [M]⁺, 347.9 (100) [M – HCl]⁺. UV/Vis (MeOH, room temp.; λ_{max} , nm) (ε [cm⁻¹] M⁻¹): 303 (510), 475 (14). C₁₅H₂₅Cl₂N₅Ni (421.00): calcd. C 42.80, H 5.99, N 16.64; found C 42.60, H 6.19, N 16.52.

[Ni(pyc)(NCCH₃)](OTf)₂: To a methanol solution (10 mL) of [Ni-(pyc)(Cl)](Cl) (210 mg, 0.50 mmol) was added a methanol solution (5 mL) of NaOTf (172 mg, 1.0 mmol) and the mixture was stirred at room temp. for 3 h. The solution was evaporated and extracted with acetonitrile. After the solution was concentrated, Et₂O was slowly added to give a purple crystalline powder of [Ni-(pyc)(NCCH₃)](OTf)₂ in 82% yield. ESI-TOF-MS (CH₃CN): m/z (%) = 195.3 (20) [M]²⁺, 215.8 (40) [M + (CH₃CN)]²⁺, 498.2 (100) [M - (CH₃CN) + OTf]⁺. UV/Vis (CH₃CN, room temp.; λ_{max} , nm) (ε [cm⁻¹] M⁻¹): 501 (49). C₁₉H₂₈F₆N₆NiO₇S₂ (689.28): calcd. C 33.11, H 4.09, N 12.19, S 9.30; found C 33.13, H 4.13, N 12.16, S 9.12.

[Ni(pyc)(MeSCoM)](OTf) (6): To an acetonitrile solution (5 mL) of [Ni(pyc)(NCCH₃)](OTf)₂ (139 mg, 0.20 mmol) was added an acetonitrile solution (2 mL) of (nBu_4N)[MeSCoM] (78 mg, 0.20 mmol) and the mixture was stirred at room temp. for 30 min. The solution was evaporated and washed with Et₂O. The crude product was purified by recrystallization from CH₃CN/Et₂O to give purple crystals of 6 in 53% yield. ESI-TOF-MS (CH₃CN): mlz (%) = 504.1 (100) [M]⁺, 498.0 (3) [M – (MeSCoM) + OTf]⁺. UV/Vis (CH₃CN, room temp.; λ_{max} , nm) (ε [cm⁻¹] M⁻¹): 528 (17). C₁₉H₃₂F₃N₅NiO₇S₃ (654.38): calcd. C 34.87, H 4.93, N 10.70, S 14.70; found C 34.82, H 4.95, N 10.57, S 14.74.

FULL PAPER

[Ni(pye)(HSCoM)](OTf) (7): The synthesis of 7 was carried out as described for 6, but using [Ni(pye)(NCCH₃)](OTf)₂ (120 mg, 0.17 mmol) and (nBu₄N)[HSCoM] (67 mg, 0.17 mmol) with 42% yield. ESI-TOF-MS (CH₃CN): m/z (%) = 490.0 (100) [M]⁺, 498.0 (2) [M – (HSCoM) + OTf]⁺. UV/Vis (CH₃CN, room temp.; λ _{max}, nm) (ε [cm⁻¹] m⁻¹): 524 (14). C₁₈H₃₀F₃N₅NiO₇S₃ (640.35): calcd. C 33.76, H 4.72, N 10.94, S 15.02; found C 33.92, H 4.83, N 10.94, S 14.32.

[Ni(pyc)(Metp)](OTf) (8): To a methanol solution (5 mL) of [Ni(pyc)(Cl)](Cl) (119 mg, 0.28 mmol) was added a methanol solution

(3 mL) of NaOTf (48 mg, 0.28 mmol) and sodium 3-methylthiopropionate (40 mg, 0.28 mmol). The mixture was stirred at room temp. for 30 min and the solvents were evaporated in vacuo. The residue was extracted with acetonitrile and the solvents evaporated to dryness. The purple powder of **8** was obtained in 73% yield. Purple crystals suitable for X-ray structural analysis were obtained from acetonitrile solution layered with Et₂O at room temp. ESI-TOF-MS (CH₃CN): m/z (%) = 467.9 (100) [M]⁺, 348.0 (20) [M – MetpH]⁺. UV/Vis (CH₃CN, room temp.; $\lambda_{\rm max}$, nm) (ε [cm⁻¹] m⁻¹): 523 (11). C₂₀H₃₂F₃N₅NiO₆S₂ (618.32): calcd. C 38.85, H 5.21, N 11.33, S 10.37; found C 38.77, H 5.03, N 11.31, S 10.21.

Table 3. Crystal data for 1–8, RSRS-[Ni(tmc)(Cl)](Cl), [Ni(pyc)(Cl)](Cl), and [Ni(pyc)(NCCH₃)](OTf)₂.

	1	2	3	4	5	6
Formula	C ₁₇ H ₃₉ N ₄ ClNiO ₃ S ₂	C ₁₈ H ₃₉ N ₄ F ₃ NiO ₆ S ₃	C ₁₆ H ₃₇ N ₄ ClF ₃ NiO ₃ S ₂	C ₁₇ H ₃₇ N ₄ F ₃ NiO ₆ S ₃	C ₁₉ H ₃₉ N ₄ F ₃ NiO ₅ S ₂	C ₁₉ H ₃₂ N ₅ F ₃ NiO ₇ S ₃
Formula weight	505.79	619.40	491.77	605.38	583.36	654.37
Crystal system	monoclinic	orthorhombic	orthorhombic	monoclinic	triclinic	orthorhombic
Space group	P2 ₁ (No. 4)	Pbca (No. 61)	Pbca (No. 61)	P2 ₁ (No. 4)	PĪ (No. 2)	Pbca (No. 61)
a [Å]	8.500(5)	10.3006(15)	9.5276(12)	8.617(2)	8.680(3)	10.4216(15)
b [Å]	9.300(5)	19.501(3)	21.014(3)	16.352(4)	10.560(4)	18.386(3)
c [Å]	14.853(9)	26.912(4)	22.193(3)	9.771(2)	14.529(5)	28.940(4)
a [°]	90	90	90	90	95.694(3)	90
β [°]	102.804(7)	90	90	108.241(3)	102.726(6)	90
γ [°]	90	90	90	90	99.320(4)	90
V [Å ³]	1144.9(11)	5406.0(13)	4443.4(10)	1307.6(5)	1269.1(8)	5545.2(14)
Z	2	8	8	2	2	8
	1.467	1.522	1.470	1.537	1.526	1.567
$ ho_{ m calcd} [m g cm^{-1}]$	11.717	10.100	12.053	10.420	9.884	9.932
μ [cm ⁻¹]	540	2608	2096	636	616	9.932 2720
F(000)						
2θ _{max} [°]	55.0	55.0	55.0	54.9	55.0	55.0
Refl. collected	9187	41436	49457	10305	15128	43020
Indep. (R_{int})	4488 (0.044)	6178 (0.035)	5089 (0.089)	5354 (0.021)	5788 (0.032)	6344 (0.071)
Parameters	254	371	254	312	308	344
$R_1^{[a]}$	0.0589	0.0613	0.0478	0.0352	0.0446	0.0698
$wR_2^{[b]}$	0.1472	0.1670	0.1523	0.0741	0.1173	0.2137
GOF on $F^{2[c]}$	1.082	1.099	1.090	1.035	1.126	1.082
Flack parameters	-0.01(2)	_	_	-0.020(10)	_	_
CCDC	779878	779879	779880	779881	779882	779883
Complex	7	8	RSRS-[Ni(tmc)(Cl)](Cl)	[Ni(pyc)(Cl)](Cl)·	[Ni(pyc)(NCCH ₃)](O	Tf)
	,		$2(H_2O)$	CH ₃ OH	[N(pyc)(NCCH3)](O	11)2
Formula	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂	2(H ₂ O)	F (F) // /3// /	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂	11)2
			2(H ₂ O)	CH ₃ OH		11)2
Formula weight	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂	11)2
Formula weight Crystal system	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28	11/2
Formula weight Crystal system Space group	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic	11/2
Formula weight Crystal system Space group a [Å]	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14)	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15)	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14)	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14)	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3)	11/2
Formula weight Crystal system Space group a [Å] b [Å]	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15)	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5)	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11)	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3)	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9)	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å]	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5)	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9)	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15)	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P ₂₁ /c (No. 14) 9.520(3) 11.335(3)	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3)	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] a [°]	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16)	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90	$2(H_2O)$ $C_{14}H_{36}N_4Cl_2NiO_2$ 422.07 monoclinic $P2_1/c$ (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P ₂₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°]	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2)	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7)	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3)	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4)	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3)	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°]	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2)	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7)	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90	11/2
Formula weight Crystal system Space group $a \ [\mathring{A}]$ $b \ [\mathring{A}]$ $c \ [\mathring{A}]$ $a \ [^{o}]$ $\beta \ [^{o}]$ $\gamma \ [^{o}]$	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8)	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic C2/c (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4)	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4)	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9)	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2)	11/2
Formula weight Crystal system Space group $a \ [\mathring{A}]$ $b \ [\mathring{A}]$ $c \ [\mathring{A}]$ $a \ [^{o}]$ $\beta \ [^{o}]$ $V \ [\mathring{A}^{3}]$	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic C2/c (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $\rho_{\rm calcd}$ [gcm $^{-1}$]	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4 1.420	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652	11/2
Formula weight Crystal system Space group $a \ [\mathring{A}]$ $b \ [\mathring{A}]$ $a \ [^{\circ}]$ $\beta \ [^{\circ}]$ $V \ [\mathring{A}^{3}]$ Z $\rho_{\mathrm{calcd}} \ [\mathrm{g cm}^{-1}]$ $u \ [\mathrm{cm}^{-1}]$	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406	$C_{20}H_{32}N_5F_3NiO_6S_2$ 618.32 monoclinic C2/c (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4 1.420 12.669	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419	11/2
Formula weight Crystal system Space group $a \ [\mathring{A}]$ $b \ [\mathring{A}]$ $c \ [\mathring{A}]$ $a \ [^{\circ}]$ $\beta \ [^{\circ}]$ $\gamma \ [^{\circ}]$ $V \ [\mathring{A}^{\circ}]$ Z $\rho_{\mathrm{calcd}} \ [\mathrm{gcm}^{-1}]$ $u \ [\mathrm{cm}^{-1}]$ $F(000)$	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406 1328	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594 2576	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4 1.420 12.669 904	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429 948	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419 2832	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] γ	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406 1328 54.9	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594 2576 55.1	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4 1.420 12.669 904 54.9	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429 948 55.0	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419 2832 55.0	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $\rho_{\rm calcd}$ [gcm $^{-1}$] μ [cm $^{-1}$] $F(000)$ $2\theta_{\rm max}$ [°] Refl. collected	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406 1328 54.9 20634	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594 2576 55.1 21688	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4 1.420 12.669 904 54.9 15598	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429 948 55.0 24038	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419 2832 55.0 31579	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] β [°] γ [°] Refl. collected Indep. (γ [°] γ [°] Refl. collected Indep. (γ [°] γ [°]	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406 1328 54.9 20634 6051 (0.036)	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594 2576 55.1 21688 6033 (0.033)	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P2 ₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4 1.420 12.669 904 54.9 15598 4497 (0.042)	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P2 ₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429 948 55.0 24038 4640 (0.048)	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419 2832 55.0 31579 12271 (0.074)	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] a [°] b [β] y [°] V [ų] Z O _{calcd} [gcm ⁻¹] u [cm ⁻¹] F(000) 2O _{max} [°] Refl. collected Indep. (R _{int}) Parameters	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406 1328 54.9 20634 6051 (0.036) 344	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594 2576 55.1 21688 6033 (0.033) 380	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P ₂₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4 1.420 12.669 904 54.9 15598 4497 (0.042) 225	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P ₂₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429 948 55.0 24038 4640 (0.048) 245	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419 2832 55.0 31579 12271 (0.074) 740	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] a [°] b	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406 1328 54.9 20634 6051 (0.036) 344 0.0464	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594 2576 55.1 21688 6033 (0.033) 380 0.0564	$2(H_2O)$ $C_{14}H_{36}N_4Cl_2NiO_2$ 422.07 monoclinic $P2_1/c$ (No. 14) $8.9533(11)$ $11.9505(15)$ $18.453(2)$ 90 $91.228(3)$ 90 $1974.0(4)$ 4 1.420 12.669 904 54.9 15598 4497 (0.042) 225 0.0258	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P ₂₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429 948 55.0 24038 4640 (0.048) 245 0.0395	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419 2832 55.0 31579 12271 (0.074) 740 0.0635	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] a [°] b [Å] c [Å] a [°] b [a [°] b [a [°] b [°] Refl. collected Indep. ($R_{\rm int}$) Parameters $R_1^{\rm [a]}$ $wR_2^{\rm [b]}$	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406 1328 54.9 20634 6051 (0.036) 344 0.0464 0.1285	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594 2576 55.1 21688 6033 (0.033) 380 0.0564 0.1631	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P ₂₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4 1.420 12.669 904 54.9 15598 4497 (0.042) 225 0.0258 0.0626	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P ₂₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429 948 55.0 24038 4640 (0.048) 245 0.0395 0.1003	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419 2832 55.0 31579 12271 (0.074) 740 0.0635 0.1868	11/2
Formula weight Crystal system Space group a [Å] b [Å] c [Å] c [Å] a [°] b [Å] c [Å] a [°] b [°] Refl. collected Indep. $(R_{\rm int})$ Parameters $R_1^{\rm [a]}$ $wR_2^{\rm [b]}$ GOF on $F^{\rm 2[c]}$	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406 1328 54.9 20634 6051 (0.036) 344 0.0464	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594 2576 55.1 21688 6033 (0.033) 380 0.0564	$2(H_2O)$ $C_{14}H_{36}N_4Cl_2NiO_2$ 422.07 monoclinic $P2_1/c$ (No. 14) $8.9533(11)$ $11.9505(15)$ $18.453(2)$ 90 $91.228(3)$ 90 $1974.0(4)$ 4 1.420 12.669 904 54.9 15598 4497 (0.042) 225 0.0258	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P ₂₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429 948 55.0 24038 4640 (0.048) 245 0.0395	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419 2832 55.0 31579 12271 (0.074) 740 0.0635 0.1868 1.047	11/2
Formula Formula weight Crystal system Space group $a \ [\mathring{A}]$ $b \ [\mathring{A}]$ $c \ [\mathring{A}]$ $a \ [^{\circ}]$ $\beta \ [^{\circ}]$ $\gamma \ [^{\circ}]$ $V \ [\mathring{A}^{3}]$ Z $\rho_{\rm calcd} \ [\rm gcm^{-1}]$ $\mu \ [\rm cm^{-1}]$ $F(000)$ $2\theta_{\rm max} \ [^{\circ}]$ Refl. collected Indep. $(R_{\rm int})$ Parameters $R_1^{[a]}$ $wR_2^{[b]}$ GOF on $F^{2[c]}$ Flack parameters CCDC	C ₁₈ H ₃₀ N ₅ F ₃ NiO ₇ S ₃ 640.34 monoclinic P2 ₁ /c (No. 14) 9.0478(15) 30.802(5) 9.6572(16) 90 101.070(2) 90 2641.3(8) 4 1.610 10.406 1328 54.9 20634 6051 (0.036) 344 0.0464 0.1285	C ₂₀ H ₃₂ N ₅ F ₃ NiO ₆ S ₂ 618.32 monoclinic <i>C2/c</i> (No. 15) 10.143(5) 20.438(9) 28.360(13) 90 116.098(7) 90 5279(4) 8 1.556 9.594 2576 55.1 21688 6033 (0.033) 380 0.0564 0.1631	2(H ₂ O) C ₁₄ H ₃₆ N ₄ Cl ₂ NiO ₂ 422.07 monoclinic P ₂₁ /c (No. 14) 8.9533(11) 11.9505(15) 18.453(2) 90 91.228(3) 90 1974.0(4) 4 1.420 12.669 904 54.9 15598 4497 (0.042) 225 0.0258 0.0626	CH ₃ OH C ₁₆ H ₂₈ N ₅ Cl ₂ NiO ₂ 452.04 monoclinic P ₂₁ /c (No. 14) 9.520(3) 11.335(3) 19.029(5) 90 99.676(4) 90 2024.2(9) 4 1.483 12.429 948 55.0 24038 4640 (0.048) 245 0.0395 0.1003	C ₁₉ H ₂₈ N ₆ F ₆ NiO ₇ S ₂ 689.28 monoclinic <i>Cc</i> (No. 9) 12.157(3) 13.635(3) 33.840(8) 90 98.944(3) 90 5541(2) 8 1.652 9.419 2832 55.0 31579 12271 (0.074) 740 0.0635 0.1868	11/2

[a] $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ [$I > 2\sigma(I)$]. [b] $wR2 = \{ [\Sigma w(|F_o| - |F_c|)^2 / \Sigma w F_o^2] \}^{1/2}$ (all data). [c] $GOF = [\Sigma w(|F_o| - |F_c|)^2 / (N_o - N_v)]^{1/2}$ ($N_o = 1$ number of observations, $N_v = 1$ number of variables).

Crystal Structure Determination: Crystallographic data and refinement parameters for 1–8, RSRS-[Ni(tmc)Cl](Cl), [Ni(pyc)(Cl)](Cl), and [Ni(pyc)(NCCH₃)](OTf)₂ are summarized in Table 3. Single crystals were mounted on a loop using oil (CryoLoop, Immersion Oil, Type B or Paraton, Hampton Research Corp.) and set on a Rigaku AFC-8 {for 1, 3-8, and RSRS-[Ni(tmc)(Cl)](Cl)} or AFC-10 {for 2, [Ni(pyc)(Cl)](Cl), and [Ni(pyc)(NCCH₃)](OTf)₂} instrument equipped with a Mercury CCD detector (for 3-7) or with a Saturn CCD detector {for 1, 2, 8, RSRS-[Ni(tmc)(Cl)](Cl), [Ni-(pyc)(Cl)](Cl), and [Ni(pyc)(NCCH₃)](OTf)₂}. The measurements were made using graphite-monochromated Mo- K_{α} radiation (λ = 0.71070 Å) under a cold nitrogen stream. The frame data were integrated and corrected for absorption with the Rigaku/MSC CrystalClear program package. The structures were solved using direct methods (SIR-92 or SIR-97) and standard difference map techniques and were refined with full-matrix least-squares procedures on F² by the Rigaku/MSC CrystalStructure package. Anisotropic refinement was applied to all non-hydrogen atoms. The counter anion CF₃SO₃⁻ in 2, HSCoM⁻ in 3, the thiol SH in 7, CH₃SCH₂CH₂CO₂ in **8**, and crystalline solvent MeOH in [Ni-(pyc)(Cl)](Cl) were disordered over several positions, in which the respective ratio was refined freely, while the total occupancy of the components was constrained to unity. The hydrogen atom of SH in 4 and H₂O in RSRS-[Ni(tmc)(Cl)](Cl) were assigned from the Fourier map and refined isotropically. All of the other hydrogen atoms were placed at calculated positions.

CCDC numbers are shown in Table 3.

Supporting Information (see also the footnote on the first page of this article): Figure S1–S3 show ORTEP plots of *RSRS*-[Ni(tmc)(Cl)](Cl), [Ni(pyc)(Cl)](Cl), and [Ni(pyc)(NCCH₃)](OTf)₂, respectively.

Acknowledgments

This research was financially supported by Grant-in-Aids for Scientific Research (no. 18GS0207) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

- a) W. Grabarse, S. Shima, F. Mahlert, E. C. Duin, R. K. Thauer, U. Ermler, in: *Handbook of Metalloproteins* (Eds.: A. Messershmidt, R. Huber, T. Poulos, K. Wieghardt), John Wiley & Sons, New York, 2001, vol. 2, pp. 897–914; b) A. A. DiMarco, T. A. Bobik, R. S. Wolfe, *Annu. Rev. Biochem.* 1990, 59, 355–394; c) R. P. Gunsalus, R. S. Wolfe, *FEMS Microbiol. Lett.* 1978, 3, 191–193; d) W. L. Ellefson, W. B. Whitman, R. S. Wolfe, *Proc. Natl. Acad. Sci. USA* 1982, 79, 3707–3710; e) A. Pfaltz, D. A. Livingston, B. Jaun, G. Diekert, R. K. Thauer, A. Eschenmoser, *Helv. Chim. Acta* 1985, 68, 1338–1358; f) M. A. Halcrow, G. Christou, *Chem. Rev.* 1994, 94, 2421–2481; g) R. K. Thauer, *Microbiology* 1998, 144, 2377–2406.
- [2] W. Grabarse, F. Mahlert, E. C. Duin, M. Goubeaud, S. Shima, R. K. Thauer, V. Lamzin, U. Ermler, J. Mol. Biol. 2001, 309, 315–330.
- [3] a) W. Grabarse, F. Mahlert, S. Shima, R. K. Thauer, U. Ermler, J. Mol. Biol. 2000, 303, 329–344; b) W. Grabarse, S. Shima, M. Goubeaud, R. K. Thauer, Science 1997, 278, 1457–1462.
- [4] a) S. P. J. Albracht, D. Ankel-Fuchs, R. Böcher, J. Ellermann, J. Moll, J. W. van der Zwaan, R. K. Thauer, *Biochim. Biophys. Acta* 1988, 941, 86–102.
- [5] Q. Tang, P. E. Carrington, Y.-C. Hong, M. J. Maroney, S. W. Ragsdale, D. F. Bocian, J. Am. Chem. Soc. 2002, 124, 13242– 13256.
- [6] M. S. Ram, C. G. Riordan, R. Ostrander, A. N. Rheingold, *Inorg. Chem.* 1995, 34, 5884–5891.

- [7] a) T. Arai, K. Kashitani, H. Kondo, S. Sakaki, *Bull. Chem. Soc. Jpn.* 1994, 67, 705–709; b) I. Zilbermann, G. Golub, H. Cohen, D. Meyerstein, *Inorg. Chim. Acta* 1994, 227, 1–3.
- [8] H. Jose Guadalupe Hernández, T. Pandiyan, S. Bernes, *Inorg. Chim. Acta* 2006, 359, 1–12.
- [9] a) F. Wagner, E. K. Barefield, *Inorg. Chem.* 1976, 15, 408–417;
 b) F. Wagner, E. K. Barefiled, *Inorg. Chem.* 1973, 12, 2435–2439.
- [10] E. Kimura, T. Koike, H. Nada, Y. Iitaka, J. Chem. Soc., Chem. Commun. 1986, 25, 1322–1323.
- [11] Although the complexes are racemic, the relative configuration of the four N atoms of [Ni(tmc)]²⁺ has been shown with *R* and *S* in place of *R** and *S** in many papers, and accordingly we will assign them in this paper; see: P. J. Connolly, E. J. Billo, *Inorg. Chem.* **1987**, *26*, 3224–3226; B. Bosnich, C. K. Poon, M. L. Tobe, *Inorg. Chem.* **1965**, *4*, 1102–1108.
- [12] N. Herron, P. Moore, *Inorg. Chim. Acta* **1979**, *36*, 89–96.
- [13] a) M. Kato, T. Ito, Bull. Chem. Soc. Jpn. 1986, 59, 285–294; b)
 M. J. D'Aniello Jr., M. T. Mocella, F. Wagner, E. K. Barefield, I. C. Paul, J. Am. Chem. Soc. 1975, 97, 192–194; c) A. Escuer, R. Vicente, M. S. El Fallah, X. Solans, M. Font-Bardia, Inorg. Chim. Acta 1996, 247, 85–91; d) R. Vicente, A. Escuer, M. S. El Fallah, X. Solans, M. Font-Bardia, Inorg. Chim. Acta 1997, 261, 227–232; e) I. S. Crick, B. F. Hoskins, P. A. Tregloan, Inorg. Chim. Acta 1986, 114, L33–34; f) S. F. Lincoln, T. W. Hambley, D. L. Pisaniello, J. H. Coates, Aust. J. Chem. 1984, 37, 713–723.
- [14] The X-ray-derived structure of RSRS-[Ni(tmc)(Cl)](Cl) is shown in the Supporting Information. The related pentacoordinated complex [Ni(Bz₄-cyclam)(Cl)](ClO₄) (Bz₄-cyclam = 1,4,8,11-tetrabenzyl-1,4,8,11-tetraazacyclotetradecane) was also reported; see: T. M. Hunter, S. J. Paisey, H. Park, L. Cleghorn, A. Parkin, S. Parsons, P. J. Sadler, J. Inorg. Biochem. **2004**, *98*, 713–719.
- [15] a) M. Micheloni, P. Paoletti, S. Bürki, T. A. Kaden, *Helv. Chim. Acta* 1982, 65, 587–594; b) I. S. Crick, P. A. Tregloan, *Inorg. Chim. Acta* 1988, 142, 291–299.
- [16] The molecular structures of [Ni(pyc)(Cl)](Cl) and [Ni(pyc)-(NCCH₃)](OTf)₂ are depicted in the Supporting Information.
- [17] E. Kimura, T. Koike, H. Nada, Y. Iitaka, *Inorg. Chem.* 1988, 27, 1036–1040.
- [18] a) T. M. Cocker, R. E. Bachman, Chem. Commun. 1999, 875-876; b) H. Endres, Z. Anorg. Allg. Chem. 1984, 513, 78-88; c) C. Schmid, M. Neuburger, M. Zehnder, T. A. Kaden, T. Hubner, Polyhedron 1998, 17, 4065-4070; d) F. Gándara, C. Fortes-Revilla, N. Snejko, E. Gutiérrez-Puebla, M. Iglesias, M. A. Monge, *Inorg. Chem.* **2006**, 45, 9680–9687; e) J.-M. Li, Y.-M. Jiang, Y.-F. Wang, D.-W. Liang, Acta Crystallogr., Sect. E 2005, 61, m2160-m2162; f) B. F. Abrahams, T. A. Hudson, R. Robson, Chem. Eur. J. 2006, 12, 7095-7102; g) E. T. Papish, M. T. Taylor, F. E. Jernigan III, M. J. Rodig, R. R. Shawhan, G. P. A. Yap, F. A. Jové, Inorg. Chem. 2006, 45, 2242-2250; h) S.-I. Aizawa, T. Yagu, K. Kato, S. Funahashi, Anal. Sci. 1995, 11, 557-562; i) R. E. Marsh, M. Kapon, Shengzhi Hu, F. H. Herbstein, Acta Crystallogr., Sect. B 2002, 58, 62-77; j) O. Kristiansson, I. Persson, D. Bobicz, D. Xu, Inorg. Chim. Acta **2003**, 344, 15–27; k) H. Zhu, H. Dong, W. Huang, S. Gou, J. Mol. Struct. 2007, 831, 55-60; 1) Y.-F. Yu, Y.-Q. Wei, K.-C. Wu, Acta Crystallogr., Sect. E Online 2007, 63, m2119; m) B.-L. Liao, J.-X. Li, Y.-M. Jiang, Acta Crystallogr., Sect. E 2007, 63, m1974.
- [19] R. P. Gunsalus, J. A. Romesser, R. S. Wolfe, *Biochemistry* 1978, 17, 2374–2377.
- [20] I. Manz, I. Dietrich, M. Przybylski, U. Niemeyer, J. Pohl, P. Hilgard, N. Brock, *Biomed. Mass Spectrom.* 1985, 9, 545–553. Received: July 26, 2010

Published Online: September 15, 2010